现在是:
 设为首页   加入收藏
 

 首页 | 学院概况 | 师资力量 | 专业建设 | 学生工作 | 教学管理 | 科研管理 | 实验室管理 | 计算机考试 | 学科竞赛 | 学子风采 | 下载中心 

-更多-

 数学建模 
 蓝桥杯比赛 
 计算机设计大赛 
-更多-
大学计算机基础精品课程
计算机辅助设计精品课程
C语言程序设计精品课程
 
当前位置: 首页>>学科竞赛>>数学建模>>建模简介>>正文
 
全国大学生数学建模竞赛简介
2012-12-21 15:41     (点击:)

全国大学生数学建模竞赛

    全国大学生数学建模竞赛是国家教育部高教司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解,计算方法的设计和计算机实现,结果的分析和检验,模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行;竞赛一般在每年9月初的三天内举行(为保证大家尽量少的耽误课程,所以一般包括周末的两天);大学生以队为单位参赛,每队3人及1个老师作为辅导,专业不限。

全国大学生数学建模竞赛章程(2008年)

第一条 总则

全国大学生数学建模竞赛(以下简称竞赛)是教育部高等教育司和中国工业与应用数学学会共同主办的面向全国大学生的群众性科技活动,目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。

第二条 竞赛内容

竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。

第三条 竞赛形式、规则和纪律

1.全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行。

2.竞赛每年举办一次,一般在某个周末前后的三天内举行。

3.大学生以队为单位参赛,每队3人(须属于同一所学校),专业不限。竞赛分本科、专科两组进行,本科生参加本科组竞赛,专科生参加专科组竞赛(也可参加本科组竞赛),研究生不得参加。每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论,否则按违反纪律处理。

4.竞赛期间参赛队员可以使用各种图书资料、计算机和软件,在国际互联网上浏览,但不得与队外任何人(包括在网上)讨论。

5.竞赛开始后,赛题将公布在指定的网址供参赛队下载,参赛队在规定时间内完成答卷,并准时交卷。

6.参赛院校应责成有关职能部门负责竞赛的组织和纪律监督工作,保证本校竞赛的规范性和公正性。

第四条 组织形式

1.竞赛由全国大学生数学建模竞赛组织委员会(以下简称全国组委会)主持,负责每年发动报名、拟定赛题、组织全国优秀答卷的复审和评奖、印制获奖证书、举办全国颁奖仪式等。

2.竞赛分赛区组织进行。原则上一个省(自治区、直辖市)为一个赛区,每个赛区应至少有6所院校的20个队参加。邻近的省可以合并成立一个赛区。每个赛区建立组织委员会(以下简称赛区组委会),负责本赛区的宣传发动及报名、监督竞赛纪律和组织评阅答卷等工作。未成立赛区的各省院校的参赛队可直接向全国组委会报名参赛。

3.设立组织工作优秀奖,表彰在竞赛组织工作中成绩优异或进步突出的赛区组委会,以参赛校数和队数、征题的数量和质量、无违纪现象、评阅工作的质量、结合本赛区具体情况创造性地开展工作以及与全国组委会的配合等为主要标准。

第五条 评奖办法

1.各赛区组委会聘请专家组成评阅委员会,评选本赛区的一等、二等奖(也可增设三等奖),获奖比例一般不超过三分之一,其余凡完成合格答卷者可获得成功参赛证书。

2.各赛区组委会按全国组委会规定的数量将本赛区的优秀答卷送全国组委会。全国组委会聘请专家组成全国评阅委员会,按统一标准从各赛区送交的优秀答卷中评选出全国一等、二等奖。

3.全国与各赛区的一、二等奖均颁发获奖证书。

4.对违反竞赛规则的参赛队,一经发现,取消参赛资格,成绩无效。对所在院校要予以警告、通报,直至取消该校下一年度参赛资格。对违反评奖工作规定的赛区,全国组委会不承认其评奖结果。

第六条 异议期制度

1.全国(或各赛区)获奖名单公布之日起的两个星期内,任何个人和单位可以提出异议,由全国组委会(或各赛区组委会)负责受理。

2.受理异议的重点是违反竞赛章程的行为,包括竞赛期间教师参与、队员与他人讨论,不公正的评阅等。对于要求将答卷复评以提高获奖等级的申诉,原则上不予受理,特殊情况可先经各赛区组委会审核后,由各赛区组委会报全国组委会核查。

3.异议须以书面形式提出。个人提出的异议,须写明本人的真实姓名、工作单位、通信地址(包括联系电话或电子邮件地址等),并有本人的亲笔签名;单位提出的异议,须写明联系人的姓名、通信地址(包括联系电话或电子邮件地址等),并加盖公章。全国组委会及各赛区组委会对提出异议的个人或单位给予保密。

4.与受理异议有关的学校管理部门,有责任协助全国组委会及各赛区组委会对异议进行调查,并提出处理意见。全国组委会或各赛区组委会应在异议期结束后两个月内向申诉人答复处理结果。

第七条 经费

1.参赛队所在学校向所在赛区组委会交纳参赛费。

2.赛区组委会向全国组委会交纳一定数额的经费。

3.各级教育管理部门的资助。

4.社会各界的资助。

第八条 解释与修改

本章程从2008年开始执行,其解释和修改权属于全国组委会。

第四届全国大学生数学建模竞赛

组委会成员名单

(2008-)

顾 问: 周远清(中国高等教育学会会长)

萧树铁(清华大学教授)

主 任: 李大潜(复旦大学教授、中国科学院院士)

副主任:陈叔平(贵州大学教授、校长)

张增顺(高等教育出版社总编辑)

委 员: 李志宏(教育部高等教育教学评估中心副主任)

李尚志(北京航空航天大学教授)

杨 虎(重庆大学教授)

陈永川(南开大学教授、副校长)

周义仓(西安交通大学教授)

姜 明(北京大学教授)

郝志峰(华南理工大学教授)

袁亚湘(中国科学院计算数学与科学工程计算研究所研究员)

高 夯(东北师范大学教授)

谢金星(清华大学教授)

谭永基(复旦大学教授)

秘书长: 谢金星(兼)

副秘书长: 孟大志(北京工业大学教授)

蔡志杰(复旦大学副教授)

李艳馥(高等教育出版社数学分社社长)

第四届全国大学生数学建模竞赛组委会下属专家组成员名单

组 长: 陈叔平(贵州大学教授、校长)

副组长: 叶其孝(北京理工大学教授)

姜启源(清华大学教授)

谭永基(复旦大学教授)

组 员: 方海涛(中国科学院计系统科学研究所研究员)

王 强(北京应用物理与计算数学研究所研究员)

孙山泽(北京大学教授)

李尚志(北京航空航天大学教授)

周义仓(西安交通大学教授)

孟大志(北京工业大学教授)

唐 云(清华大学教授)

谢金星(清华大学教授)

蔡志杰(复旦大学副教授)

(根据需要,专家组可聘请其他成员,共同组成当年的专家组)

美国大学生数学建模竞赛

美国大学生数学建模竞赛(含交叉学科竞赛)是由美国自然科学基金协会和美国数学与数学应用协会共同主办,美国 运筹学学会、工业与应用数学学会、数学学会等多家国际机构协办的唯一一项国际性建模竞赛。竞赛要求3个以下本科未毕业学生在4天时间内用数学建模及其他知识解决一个具体的社会 工程问题,用英语提交论文。具体组织模式见网站

数学建模数据集

数学建模涉及大量数据集,供相关研究人员用于测试并论证数学建模算法,例如:

1. 2008全国研究生数学建模竞赛试题及数据

2. 2011高教社杯全国大学生数学建模竞赛题目

3. 可进行密度建模训练的iris数据集

4. Applied Bayesian Modelling Dataset(应用贝叶斯建模数据集)

5. Worksheets Data for Multilevel modelling(多层次建模的工作表格式数据)等。

数学建模资料

竞赛参考书

l、中国大学生数学建模竞赛,李大潜主编,高等教育出版社(1998).

2.大学生数学建模竞赛辅导教材,(一)(二)(三),叶其孝主编,湖南教育 出版社(1993,1997,1998).

3.数学建模教育与国际数学建模竞赛 《工科数学》专辑,叶其孝主编, 《工科数学》杂志社,1994).

国内教材、丛书

1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版,2003年第三版,2011年第四版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中获"全国优秀教材奖").

2.数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社,(1989).

3.数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出版社;(1991).

4.数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993).

5.数学模型,濮定国、 田蔚文主编,东南大学出版社(1994).

6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995)

7.数学模型,陈义华编著,重庆大学出版社,(1995)

8.数学模型建模分析,蔡常丰编著,科学出版社,(1995).

9.数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996).

10.数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996).

11.数学建模,沈继红施久玉、高振滨、张晓威编,哈尔滨工程大学出版社,(1996).

12.数学模型基础,王树禾编著,中国科学技术大学出版社,(1996).

13.数学模型方法,齐欢编著,华中理工大学出版社,(1996).

14.数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河海大学 出版社,(1996).

15.数学模型与数学建模,刘来福、曾文艺编,北京师范大学出版杜(1997).

16. 数学建模,袁震东、洪渊、林武忠、蒋鲁敏编,华东师范大学出版社。

17.数学模型,谭永基,俞文吡编,复旦大学出版社,(1997).

18.数学模型实用教程,费培之、程中瑗层主编,四川大学出版社,(1998).

19.数学建模优秀案例选编(工科数学基地建设丛书),汪国强主编,华南理工大学出版社,(1998).

20.经济数学模型(第二版)(工科数学基地建设丛书),洪毅、贺德化、昌志华 编著,华南理工大学出版社,(1999).

21.数学模型讲义,雷功炎编,北京大学出版社(1999).

22.数学建模精品案例,朱道元编著,东南大学出版社,(1999),

23.问题解决的数学模型方法,刘来福,曾文艺编著、北京师范大学出版社,(1999).

24.数学建模的理论与实践,吴翔,吴孟达,成礼智编著,国防科技大学出版社, (1999).

25、数学建模案例分析,白其岭主编,海洋出版社,(2000年,北京).

26.数学实验(高等院校选用教材系列),谢云荪、张志让主编,科学出版社,(2000).

27.数学实验,傅鹏、龚肋、刘琼荪,何中市编,科学出版社,(2000).

28.数学建模与数学实验,赵静、但琦编,高等教育出版社,(2000).

国外参考书(中译本)

1、数学模型引论, E.A。Bender著,朱尧辰、徐伟宣译,科学普及出版社(1982).

2.数学模型,[门]近藤次郎著,官荣章等译,机械工业出版社,(1985).

3.微分方程模型,(应用数学模型丛书第1卷),[美]W.F.Lucas主编,朱煜民等 译,国防科技大学出版社,(1988).

4.政治及有关模型,(应用数学模型丛书第2卷),[美W.F.Lucas主编,王国秋 等译,国防科技大学出版社,(1996).

5.离散与系统模型,(应用数学模型丛书第3卷),[美w.F.Lucas主编,成礼智 等译,国防科技大学出版社,(1996).

6.生命科学模型,(应用数学模型丛书第4卷),[美1W.F.Lucas主编,翟晓燕等 译,国防科技大学出版社,(1996).

7.模型数学--连续动力系统和离散动力系统,[英1H.B.Grif6ths和A.01dknow 著,萧礼、张志军编译,科学出版社,(1996).

8.数学建模--来自英国四个行业中的案例研究,(应用数学译丛第4号), 英]D.Burglles等著,叶其孝、吴庆宝译,世界图书出版公司,(1997)

专业性参考书

(这方面书籍很多,仅列几本供参考) :

1.水环境数学模型,[德]W.KinZE1bach著,杨汝均、刘兆昌等编纂,中国建筑工 业出版社,(1987).

2.科技工程中的数学模型,堪安琦编著,铁道出版社(1988)

3.生物医学数学模型,青义学编著,湖南科学技术出版杜(1990).

4.农作物害虫管理数学模型与应用,蒲蛰龙主编,广东科技出版社(1990).

5.系统科学中数学模型,欧阳亮编著, E山东大学出版社,(1995).

6.种群生态学的数学建模与研究,马知恩著,安徽教育出版社,(1996)

7.建模、变换、优化--结构综合方法新进展,隋允康著,大连理工大学出版社, (1986)

8.遗传模型分析方法,朱军著,中国农业出版社(1997). (中山大学数学系王寿松编辑,2001年4月)

数学建模题目

两项题

1992年 (A) 施肥效果分析问题(北京理工大学:叶其孝)

(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)

1993年 (A) 非线性交调的频率设计问题(北京大学:谢衷洁)

(B) 足球排名次问题(清华大学:蔡大用)

1994年 (A) 逢山开路问题(西安电子科技大学:何大可)

(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)

1995年 (A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)

(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)

1996年 (A) 最优捕鱼策略问题(北京师范大学:刘来福)

(B) 节水洗衣机问题(重庆大学:付鹂)

1997年 (A) 零件参数设计问题(清华大学:姜启源)

(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)

1998年 (A) 投资的收益和风险问题(浙江大学:陈淑平)

(B) 灾情巡视路线问题(上海海运学院:丁颂康)

四项题

1999年 (A) 自动化车床管理问题(北京大学:孙山泽)

(B) 钻井布局问题(郑州大学:林诒勋)

(C) 煤矸石堆积问题(太原理工大学:贾晓峰)

(D) 钻井布局问题(郑州大学:林诒勋)

2000年 (A) DNA序列分类问题(北京工业大学:孟大志)

(B) 钢管订购和运输问题(武汉大学:费甫生)

(C) 飞越北极问题(复旦大学:谭永基)

(D) 空洞探测问题(东北电力学院:关信)

2001年 (A) 血管的三维重建问题(浙江大学:汪国昭)

(B) 公交车调度问题(清华大学:谭泽光)

(C) 基金使用计划问题(东南大学:陈恩水

(D) 公交车调度问题(清华大学:谭泽光)

2002年 (A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)

(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)

(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)

(D) 赛程安排问题(清华大学:姜启源)

2003年 (A) SARS的传播问题(组委会)

(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)

(C) SARS的传播问题(组委会)

(D) 抢渡长江问题(华中农业大学:殷建肃)

2004年 (A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)

(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)

(C) 酒后开车问题(清华大学:姜启源)

(D) 招聘公务员问题(解放军信息工程大学:韩中庚)

2005年 (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)

(B) DVD在线租赁问题(清华大学:谢金星等)

(C) 雨量预报方法的评价问题(复旦大学:谭永基)

(D) DVD在线租赁问题(清华大学:谢金星等)

2006年 (A) 出版社的资源配置问题(北京工业大学:孟大志)

(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)

(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)

(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)

2007年 (A) 中国人口增长预测

(B) 乘公交,看奥运

(C) 手机“套餐”优惠几何

(D) 体能测试时间安排

2008年

(A)数码相机定位,

(B)高等教育学费标准探讨,

(C)地面搜索,

(D)NBA赛程的分析与评价

2009年

(A)制动器试验台的控制方法分析

(B)眼科病床的合理安排

(C)卫星和飞船的跟踪测控

(D)会议筹备

2010年

(A)储油罐的变位识别与罐容表标定

(B)2010年上海世博会影响力的定量评估

(C)输油管的布置

(D)对学生宿舍设计方案的评价

2011年

(A)城市表层土壤重金属污染分析

(B)交巡警服务平台的设置与调度

(C)企业退休职工养老金制度的改革

(D)天然肠衣搭配问题

2012年

(A)葡萄酒的评价

(B)太阳能小屋的设计

(C)脑卒中发病环境因素分析及干预

(D)机器人避障问题

数学建模相关

数学建模的意义

1、培养创新意识和创造能力

2.训练快速获取信息和资料的能力

3.锻炼快速了解和掌握新知识的技能

4.培养团队合作意识和团队合作精神

5.增强写作技能和排版技术

6.荣获国家级奖励有利于保送研究生

7.荣获国际级奖励有利于申请出国留学

8.更重要的是训练人的逻辑思维和开放性思考方式

数学建模经验和体会

以下是数学建模爱好者的经验和体会,与大家共享。

尊敬的老师,亲爱的同学们:

大家上午好!我是来自江苏赛区的中国矿业大学魏永生。

首先,我十分感谢组委会给我这个机会,让我在闭幕式上与来自全国各地的数学建模代表队交流此次参加夏令的心得体会.

从今年五月底,我就和队友三个人一起从全国组委会网站下载了夏令营赛题。从查阅论文资料,请教铁路交通运输专业的老师,到赛题的建模,求解和论文写作,历时近一个月. 在做题的过程中,我们到网上搜索了赛题所需要的数据源。当我们碰到不懂的专业问题时,就去拜访和咨询专业老师,或者到图书馆查阅相关书籍资料和研究论文;当我们有一项连续性的工作未能完成时,为了不打断思路,曾经没能在一天吃上三餐.为了能够尽快地完成研究论文,我和队友们曾通宵达旦地做,甚至在夜里被惊醒还继续做题。

总之,不管遇到什么困难,我们都会一起去克服,再多再大的苦难也阻挡不了我们对数学建模的热情和喜爱,我们对她已经爱不释手!

一次参赛,终身受益,这是数学建模的真谛所在!数学建模的魅力实在无穷,让我不甘心只参加一次,从大学开始,我几乎每年都参加国际,全国,地区和学校的各个级别的比赛,可以说是久经沙场的老将了!我最终获得了美国赛的一等奖.

这次夏令营是一次半竞赛半交流性质的数学建模活动。在答辩之前,我们每个队是在自己的赛区通过竞赛或竞争的方式争取到赴京参加夏令营的机会;而在北京化工大学,我们每个队又是通过答辩,交流和讨论的方式进行,这让我们看到了自己论文的优缺点.有些队模型建立得很完善,有些模型求解得很巧妙,结果比较精确,也有些队论文比较出色。"三人行必有我师"在这次夏令营活动中体现得淋漓尽致!这是数学建模高手云集的时候,我能做的只有把自己的优点发挥出来,同时吸取众高手的优点来完善自己.

数学建模带给了我们什么 是过去荣获的种种荣誉吗 答案是否定的。数学建模带给我的是现在的指示,发散性思维,各种研究方法和手段.特别是对我们未来人生的奠基作用,毫不夸张地说,我们将在以后的人生享受它的思慧!通过数学建模,我学会了"我们",培养了"三人同心,其利断金"的团队精神,数学建模教会了我顽强和忍耐,教会我做事谨慎,言如其实,教会我凡事要有自己的创新,不能局限于俗套,它还教会我踏踏实实做人,认认真真做事。

同学们,努力吧,没有最好,只有更好!

最后我代表所有参赛营员感谢主办方全国组委会和高等教育出版社,承办单位北京化工大学,还有三个协办单位对此次夏令营的帮助和资助,谢谢你们给我们这些数学建模爱好者提供一次难得的机会,也恳请你们一如既往的支持中国的数学建模事业!

谢谢大家!

最新进展

数学建模的应用,对于数学建模竞赛来说是非常大的促进和动力。

目前,国内首家数学建模公司-北京诺亚数学建模科技有限公司在北京成立。已读博士的魏永生和另外两个志同道合的同学一起合作的创业项目,源于他们熟悉的数学建模领域。

魏永生三人在2003年4月组建了一个大学生数学建模竞赛团队,当年就获得了国家二等奖,2005年荣获了国际数学建模竞赛的一等奖,同年10月注册了数学建模爱好者网站,本着数学建模走向社会,走向应用的方向,他们在去年6月正式确立了以数学建模应用为创业方向,组建了创业团队,开启了创业之路。本月初,北京诺亚数学建模科技有限公司正式注册,魏永生团队的创业正式走向正轨。

目前,诺亚数学建模正以其专业化的视角不断拓展业务壮大实力,并积极涉足铁路交通、公路交通、物流管理等其他相关领域的数学建模及数学模型解决方案 、咨询服务。

魏永生向记者解释说,也许很多人并不了解数学建模究竟有什么用途,他举了个例子,一个火车站,要计算隔多久发一辆车才能既保证把旅客都带走,又能最大程度的节约成本,这些通过数学建模都能算出最优方案。

魏永生介绍说,他们的数学建模团队已有6年的历史,彼此配合很默契,也做了数十个大大小小的项目。他们的创业理念是为直接和潜在客户提供一种前所未有的数学建模优化及数学模型解决方案,真正为客户实现投资收益的最大化、生产成本费用的最小化。

数学建模应当掌握的十类算法

1、 蒙特卡罗算法(该算法又称 随机性模拟算法,是通过计算机仿真来解决问题的算

法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)

2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要

处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)

3.线性规划整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题

属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、

Lingo软件实现)

4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉

及到图论的问题可以用这些方法解决,需要认真准备)

5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计

中比较常用的方法,很多场合可以用到竞赛中)

6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是

用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实

现比较困难,需慎重使用)

7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛

题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好

使用一些高级语言作为编程工具)

8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只

认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非

常重要的)

9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常

用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调

用)

10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该

要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab

进行处理)

关闭窗口
学院首页 | 教务处 | 学生处 | 科研处 | 数学研究所 | 陕西省教育厅 | 陕师大计算机科学学院 | 电脑报在线 | 编程中国 | 万方数据库 | 中国知网 | 清华大学出版社

Copyright © 2009-2014    学院网站. http://www.slxy.cn/
地址:商洛学院2号教学楼3层 邮政编码:726000